Dynamic Motion Vector Refreshing for Enhanced Error Resilience in HEVC

J. Carreira, V. De Silva, E. Ekmekcioglu, A. Kondoz, P. Assuncao, S. Faria

I-Lab, University of Surrey, UK; Instituto de Telecomunicações, Polytechnic Institute of Leiria/ESTG PT; Institute for Digital Technologies, Loughborough University in London, UK; Apical Ltd, Leicestershire, UK;

September 2, 2014

instituto de telecomunicações

creating and sharing knowledge for telecommunications

Qutline

- Context and motivation
- Related work
- Motion Vector coding in HEVC
- ► Evaluation of error resilience in HEVC
- ▶ Proposed Motion Vector Refreshing method
- Experimental results

Conclusions

2

EUSIPCO 2014, 1-5 September, Lisbon, Portugal

instituto de telecomunicações

Context and motivation

- Increasing diversity of services and demands for high quality multimedia contents;
- Recent development of the novel video coding standard -High Efficiency Video Coding (HEVC):
 - enables high compression rates;
 - leads to increased complexity and inherent reduction in error robustness.
- Motion Vector (MV) coding techniques in HEVC increase the temporal and spatial dependencies;
- Therefore, it is emergent to reduce the dependencies in order to increase the robustness in case of frame loss.

Related work

- Previous studies reveal that the new features introduced in the HEVC standard increase the complexity and lower error robustness due to high predictive coding:
 - ► it is clear by previous results that the HEVC is less robust than previous standards.
- The motion vector coding in HEVC increase the dependencies, leading to high error propagation in case of frame loss:
 - Previous work proposed to disable the temporal dependencies periodically in order to increase robustness.

Motion Vector coding in HEVC

- Similar to H.264/AVC SKIP mode: Motion Vectors (MV) are transmitted using previously encoded MVs as reference;
- HEVC uses more spatial candidates and allows a temporal MV predictor (TMVP) to be used as reference;
- The Merge Mode also allows encoding with zero residue (SKIP).

Test conditions

Six test sequences with 240 frames were used.					
	Sequence	Resolution	Description		
	Basketball Drill	832 × 480 50 fps	High motion with several basketball players		
	Book Arrival	$1024 \times 768 - 30 \text{ fpc}$	Low translational motion with two moving per-		
		1024 × 100 50 lps	sons		
	BQSquare	416×240 60 fps	Moderate outside motion with moving camera		
			capturing from high point		
	Kendo	1024×768.30 fpc	Moderate motion with two moving persons, and		
	rtendo	moving camera			
	Race Horses	832 imes 480 30 fps	Moderate motion with several horse riders		
100 million (100 m	Tennic	1020×1080.24 fpc	High motion with one moving person in the		
	1011113	1020 / 1000 24 105	scene		

Six test sequences with 240 frames were used:

- ► IDR period of 32 frames;
- ► GOP size of 1 (*i.e.*, I-P-P...) using one reference frame;
- Identical configurations for both H.264/AVC and HEVC encoders;

Random error patterns generated using a two-state Markov
Model.

Evaluation of error resilience in HEVC

 Bjontegaard Delta PSNR results with H.264/AVC as reference:

	Sequence	HEVC	Error free	1% loss	5% loss	
	Ocquence	configuration	Entor free	170 1055	070 1033	
	Rackethall Drill	Reference	1.685	0.149	-0.341	
	Dasketball Dilli	Without TMVP	1.572	0.978	0.875	
	Pool Arrival	Reference	0.876	-0.804	-1.252	
	BOOK Arrival	Without TMVP	0.846	0.309	0.357	
	DOC museus	Reference	1.168	-2.312	-3.785	
	DQSquare	Without TMVP	1.130	0.709	0.616	
	Kondo	Reference	1.361	-0.927	-1.808	
	i vendo	Without TMVP	1.318	0.716	0.620	

- Under error free conditions HEVC clearly outperforms the previous standard, the H.264/AVC;
- In the presence of errors the temporal MV candidate decreases the error robustness of the HEVC standard, achieving lower quality than H.264/AVC.

- The proposed method aims to reduce the temporal dependencies between MVs;
- Dependency reduction at the Coding Unit (CU) level for every frame;
- In the proposed method the temporal MV predictor is marked as unusable based on the following:
 - if it is encoded based on another temporal MV candidate from a previous encoded frame;
 - ► if it is predicted using a spatial neighbour that was previously encoded using a temporal MV candidate.

- → Valid MV dependency
- ► Disabled MV dependency
- In this case, the MV corresponding to the block (1) may use the temporal MV candidate, since the co-located block in f_{t-1} is not temporally dependent;

instituto de telecomunicações

q

- → Valid MV dependency
- Disabled MV dependency
- ► In this case, the MV corresponding to the block (1) may use the temporal MV candidate, since the co-located block in f_{t-1} is not temporally dependent;
- However, the MV prediction (2) is not allowed in the proposed scheme in order to avoid the propagation of temporal dependencies;

instituto de telecomunicações

- → Valid MV dependency
- ► Disabled MV dependency
- ► In this case, the MV corresponding to the block (1) may use the temporal MV candidate, since the co-located block in f_{t-1} is not temporally dependent;
- However, the MV prediction (2) is not allowed in the proposed scheme in order to avoid the propagation of temporal dependencies;

q

 Moreover, the block (3) cannot use the temporal MV candidate since it already depends on a MV that was previously encoded using a temporal candidate.

 Error propagation under a single frame loss event (lost frame #4) @ 2.5 Mbps:

- ► Higher quality is achieved when TMVP refresh is applied;
- ► The proposed method outperforms the TIDR, which only recovers after the refresh frame.

instituto de telecomunicações

10

 Decoded frames after a single frame loss event (lost frame #4) @ 2.0 Mbps:

Frame #6

TIDR method PSNR = 30.37 dB

 $\begin{array}{l} \mbox{Proposed method} \\ \mbox{PSNR} = 35.16 \mbox{ dB} \end{array}$

11

EUSIPCO 2014, 1-5 September, Lisbon, Portugal

instituto de telecomunicações

 Decoded frames after a single frame loss event (lost frame #4) @ 2.0 Mbps:

Frame #10

TIDR method PSNR = 29.35 dB

Proposed method PSNR = 35.19 dB

instituto de telecomunicações

EUSIPCO 2014, 1-5 September, Lisbon, Portugal

Decoded frames after a single frame loss event (lost frame #4) @ 2.0 Mbps:

TIDR method PSNR = 29.62 dB

Proposed method PSNR = 36.25 dB

instituto de telecomunicações

Frame #14

►	Bjontegaard	Delta	PSNR	results:	
---	-------------	-------	------	----------	--

Sequence	Merge Mode configuration	Error free	1% loss	5% loss
Paskethall Dill	TIDR	-0.0130	0.0924	0.3578
Daskelball Drill	Proposed	-0.0639	0.1973	0.7897
Pools Arrival	TIDR	-0.0024	0.0963	0.4324
BOOK Arrival	Proposed	-0.0144	0.3518	1.4361
DOC	TIDR	-0.0064	0.3728	1.3393
БQSquare	Proposed	-0.0333	0.4764	1.6927
Kanda	TIDR	-0.0078	0.1535	0.6051
Kelluo	Proposed	-0.0361	0.3608	1.4510
Dees Herres	TIDR	-0.0151	0.1377	0.5429
Race Horses	Proposed	-0.0416	0.1691	0.6825
Tannia	TIDR	-0.0084	0.0991	0.4388
Tennis	Proposed	-0.0463	0.1623	0.7948

- The proposed method presents almost the same rate-distortion performance as TIDR in error free case;
- In case of errors, higher average quality is achieved when the proposed method is used.

Conclusions

- ▶ In this work, the HEVC standard was studied and its error resilience ability was evaluated;
- The influence of the motion vector coding in the error robustness was investigated:
- A new approach to address the drawback of the MV coding was proposed analysing the dependencies at the block level;
- ▶ The proposed method outperforms the existing techniques under different error conditions:
- The proposed technique may be applied with other error resilience techniques to enhance error robustness.

13

Thanks for your attention!

João Carreira

PIPE
Instituto politicacio de leirie
UNIVERSITY OF
SURREY
FCT
Fundação para a Ciência e a Tecnologia

instituto de telecomunicações

creating and sharing knowledge for telecommunications

2005 H - Instituto de telecomunicações. Todos os direitos